Technical studies for a SKA-LF precursor: Antennas & Mini-arrays

J. Girard^{1,2}, P. Zarka², M. Tagger³, L. Denis⁴ + the LSS/NenuFAR team ¹CEA/SAp-Saclay, ²LESIA-Obs. Paris, ³LPC2E-Orléans, ⁴USN-Nançay

vendredi 28 mars 2014

256 dipoles

256 dipoles

Large number of elements

- sensitivity ++
- imaging ++

LWA

256 dipoles

Large number of elements

- sensitivity ++
- imaging ++

vs. Hardware/software effort

- signal acquisition
- computational load and tractability
- cost...

LWA

256 dipoles

Large number of elements

- sensitivity ++
- imaging ++

vs. Hardware/software effort

- signal acquisition
- computational load and tractability
- cost...
- Hierachical instrumentation
- ex:HBA field

96 x (4x4 dipoles)

LWA

256 dipoles

Large number of elements

- sensitivity ++
- imaging ++

vs. Hardware/software effort

- signal acquisition
- computational load and tractability
- cost...
- Hierachical instrumentation
- ex:HBA field

96 x (4x4 dipoles)

256 dipoles

Large number of elements

- sensitivity ++
- imaging ++

vs. Hardware/software effort

- signal acquisition
- computational load and tractability
- cost...
- Hierachical instrumentation
- ex:HBA field

96 x (4x4 dipoles)

Problematic:

LOFAR HBA tile

4x4 antenna tile X 96

Problematic:

LOFAR HBA tile

4x4 antenna tile X 96

\rightarrow Which elementary antenna ?

Problematic:

LOFAR HBA tile

4x4 antenna tile X 96

 \rightarrow Which elementary antenna ?

→ What topology for Mini-Arrays ? phasing strategy?

Problematic:

LOFAR HBA tile

4x4 antenna tile X 96

- → What topology for Mini-Arrays ? phasing strategy?
- \rightarrow Which global MA distribution ?

Specifications

- Large FOV & Smooth antenna pattern quasi-isotropic ≥20° elevation
 rapidly decreasing ≤20° elevation
- Broadband electrical properties in 15-80 MHz
- Simple & cost-effective design

Specifications

- Large FOV & Smooth antenna pattern quasi-isotropic ≥20° elevation
 rapidly decreasing ≤20° elevation
- Broadband electrical properties in 15-80 MHz
- Simple & cost-effective design

Studies

- EM simulations using NEC (Numerical Electromagnetics Code, NRL)
 - → Effect of the antenna geometry of the antenna (parametric study)
 - \rightarrow Effect of the environment (ground, losses ...)

• Study relevant existing antenna designs

• Study relevant existing antenna designs

[Girard, et al., CRAS, 2012]

- Definition of the optimal antenna (radiator ~ LWA + grid)
 - Antenna impedance
 - Beam smoothness

Resulting antenna pattern in its principal planes HPBW E/H = 90°/92° @ 20 MHz & 180°/118° @ 80 MHz

Antenna preamplifier (ASIC)

wideband stable Gain of >10 dB over the sky

> GURT design Nançay design Subatech design

Antenna preamplifier (ASIC)

wideband stable Gain of >10 dB over the sky

GURT design Nançay design **Subatech design**

Antenna preamplifier (ASIC)

wideband stable Gain of >10 dB over the sky

GURT design Nançay design **Subatech design**

Sensitivity to the galactic background with the LSS antenna (LSS-LONAMOS output)

- The system noise is calculated from measured LONAMOS characteristics and simulated parameters of the LSS antenna.
- The galactic noise is calculated from typical minimum galactic temperature, simulated parameters
 of the LSS antenna and measured parameters of LONAMOS
- The low cut-off frequency can be decreased or increased

LSS-LONAMOS specifications, Didier Charrier, Subatech/CNRS, February 2013

The LSS-LONAMOS board

Slide from Didier Charrier SUBATECH

The LSS-Lonamos board is a dual polarization LNA designed by the Nançay observatory for the LSS active antenna. It uses a dedicated micro chip circuit called 'LONAMOS' and designed at the Subatech laboratory

LSS-LONAMOS specifications, Didier Charrier, Subatech/CNRS, February 2013

- 1 LSS antenna detect jovian decameter emission down to ~10 MHz
- Measured gain consistent with EM simulations (NEC = 5,5 dB)

LSS Mini-array

Specifications

- Sensitivity of the MA (should detect main radiosources: CygA, CasA)
- FOV: Large primary lobe, low side lobe levels
- Broadband characteristics (f_{max}/f_{min} >5)
- «Fine» pointing
- Analog phasing system

LSS Mini-array

Specifications

K

- Sensitivity of the MA (should detect main radiosources: CygA, CasA)
- FOV: Large primary lobe, low side lobe levels
- Broadband characteristics (f_{max}/f_{min} >5)
- «Fine» pointing
- Analog phasing system

Studies

- Optimal number of antennas in MA
- Distribution of antennas in MA
- Phasing system design

SSL=-172.09 dB

SSL=-165.25 dB

SSL=-31.14 dB

N=6

N = 10

SSL=-176.55 dB

SSL=-166.68 dB

SSL = -31.03 dB

(ک) ۲(ک)

-1

IN=5

N=9

Generalized study of the optimal free positioning of MA

• Deterministic algorithm: Kogan algorithm

N=7

N = 11

• Non deterministic algorithm: Simulated annealing

SSL=-181.29 dB

SSL=-30.62 dB

SSL=-33.74 dB

SSL = -162.52 dB

SSL=-164.03 dB

SSL=-33.22 dB

N=8

N=12

[Kogan, 2000] [Kirkpatrick et al., 1989]

Optimal distributions Prop.

- •Compacts
- Irregular
- with ~ axial symmetry

[Girard, Zarka, in revision]

Optimal solutions exist ($N \ge 16$ antennas)

Irregular phased array \rightarrow **Analog phasing very complex**

very expensive

Optimal solutions exist ($N \ge 16$ antennas)

33° at 20 MHz

[Girard, et al., CRAS, 2012]

Primary lobe: 9° at 80 MHz 33° at 20 MHz Hexagonal MA

- Less grating lobes
- Lower energy lost in side lobes

[Girard, et al., CRAS, 2012]

Compensating from positive/ negative time delays

In total, 10 delay lines /pol /MA (same number as for a 4x4 array)

Prototype phasing system (MR N°1)

Lab tests compared to simulations

- source at the zenith, ~400 pointing directions
- agreement <<1 dB (except minima, < 5 dB)

41 MHz

Radiation pattern

79 MHz

vendredi 28 mars 2014

Lab tests compared to simulations

- source at the zenith, ~400 pointing directions
- agreement <<1 dB (except minima, < 5 dB)

41 MHz

Phasing system in the MA container \rightarrow

vendredi 28 mars 2014

(pers. com. Stéphane Bosse, Nançay)

(pers. com. Stéphane Bosse, Nançay)

NenuFAR toward SKA interest of physical miniaturization of delay lines

AAIR & MFAA projects knowledge of ASIC concept, phasing and integration of delay lines

AAIR = Aperture Array Integrated Receiver, MFAA = Middle Frequency Aperture Array

(pers. com. Stéphane Bosse, Nançay)

NenuFAR toward SKA interest of physical miniaturization of delay lines

AAIR & MFAA projects knowledge of ASIC concept, phasing and integration of delay lines

AAIR = Aperture Array Integrated Receiver, MFAA = Middle Frequency Aperture Array

(pers. com. Stéphane Bosse, Nançay)

Rack

NenuFAR toward SKA interest of physical miniaturization of delay lines

AAIR & MFAA projects knowledge of ASIC concept, phasing and integration of delay lines

AAIR = Aperture Array Integrated Receiver, MFAA = Middle Frequency Aperture Array

(pers. com. Stéphane Bosse, Nançay)

NenuFAR toward SKA interest of physical miniaturization of delay lines

AAIR & MFAA projects knowledge of ASIC concept, phasing and integration of delay lines

AAIR = Aperture Array Integrated Receiver, MFAA = Middle Frequency Aperture Array

(pers. com. Stéphane Bosse, Nançay)

NenuFAR toward SKA interest of physical miniaturization of delay lines

AAIR & MFAA projects knowledge of ASIC concept, phasing and integration of delay lines

AAIR = Aperture Array Integrated Receiver, MFAA = Middle Frequency Aperture Array

Specifications

- « Good » | Boone instantaneous (u,v) distribution
- Maximum effective area in 15-80 MHz
- Ground constraints (natural, buildings)

Specifications

- « Good » | Boone instantaneous (u,v) distribution
- Maximum effective area in 15-80 MHz
- Ground constraints (natural, buildings)

Studies

- Constrainted optimization of the MA positions
- Effect of relative rotation of MA
- Optimization of cabling MA

Boone algorithm: analogy between MA & gaz particles

 \rightarrow enable iterative optimization of MA position toward a gaussian model

1 MA displacement is a consequence of the mean displacement imposed on the N-1 associated Fourier Measurements

- Taking obstacles into account \rightarrow Mask derived from Nançay ground constraints (burried cables, natural obstacles, other instruments)
- GPS landmarking + topographic projection (Lambert 93)

Authorized positionning areas

Area for the 3 prototype MA

Optimal distribution model: Gaussian with FWHM = 400 m B_{max} = 450 m

[Girard, et al., CRAS, 2012]

Optimal distribution model: Gaussian with FWHM = 400 m B_{max} = 450 m

vendredi 28 mars 2014

← MA radiation pattern

vendredi 28 mars 2014

• Minimizing cable and trench length \rightarrow Need to find a compromise

• Minimizing cable and trench length \rightarrow Need to find a compromise

 \rightarrow Mathematical approach using graph theory : « Cable-Trench problem »

[Vasko, 2002]

 \rightarrow Integrating the ground constraints in Nançay

• Minimizing cable and trench length \rightarrow Need to find a compromise

 \rightarrow Mathematical approach using graph theory : « Cable-Trench problem »

[Vasko, 2002]

Construction in phases

vendredi 28 mars 2014