Technical studies for a SKA-LF precursor:

Antennas & Mini-arrays

J. Girard1,2, P. Zarka2, M. Tagger3, L. Denis4

+ the LSS/NenuFAR team

1CEA/SAp-Saclay, 2LESIA-Obs. Paris, 3LPC2E-Orléans, 4USN-Nançay

vendredi 28 mars 2014
Large instruments

LWA 256 dipoles
Large instruments

LWA 256 dipoles

Large number of elements

- sensitivity ++
- imaging ++

vendredi 28 mars 2014
Large instruments

LWA 256 dipoles

Large number of elements vs. Hardware/software effort

- sensitivity ++
- imaging ++

- signal acquisition
- computational load and tractability
- cost...
Large instruments

LWA 256 dipoles

Large number of elements vs. Hardware/software effort

- sensitivity ++
- imaging ++

- signal acquisition
- computational load and tractability
- cost...

⇒ Hierarchical instrumentation

ex: HBA field 96 x (4x4 dipoles)
Large instruments

LWA 256 dipoles

Large number of elements vs. Hardware/software effort

- sensitivity ++
- imaging ++

- signal acquisition
- computational load and tractability
- cost...

➡ Hierarchical instrumentation

ex: HBA field 96 x (4x4 dipoles)
Large instruments

LWA 256 dipoles

Large number of elements vs. Hardware/software effort

- sensitivity ++
- imaging ++

- signal acquisition
- computational load and tractability
- cost...

➡ Hierarchical instrumentation

ex:HBA field 96 x (4x4 dipoles)
NenuFAR (LSS)

Receivers

HBA
LBA

LOFAR FR606
NenuFAR (LSS)

Receivers

LBA
HBA

LOFAR FR606
NenuFAR (LSS)

- 96 LF tiles phased in analog (≥16 antennas / tiles)
- diameter ~ 400 m
- frequency band ⊆ LOFAR LBA
- LSS = Big phased array and interferometer

Receivers

LSS

LBA

HBA

LOFAR FR606

Phasing
LSS project (ANR 2009-2012)

Problematic: x 96

~

LOFAR HBA tile

4x4 antenna tile x 96
LSS project (ANR 2009-2012)

Problematic: x 96

LOFAR HBA tile

4x4 antenna tile x 96

→ Which elementary antenna?
LSS project (ANR 2009-2012)

Problematic:

\[\sim \]

4x4 antenna tile \times 96

→ Which elementary antenna?

→ What topology for Mini-Arrays?

phasing strategy?
LSS project (ANR 2009-2012)

→ Which elementary antenna?

→ What topology for Mini-Arrays?
 phasing strategy?

→ Which global MA distribution?
LSS Elementary antenna

Specifications

● Large FOV & Smooth antenna pattern - quasi-isotropic $\geq 20^\circ$ elevation
 - rapidly decreasing $\leq 20^\circ$ elevation
● Broadband electrical properties in 15-80 MHz
● Simple & cost-effective design
LSS Elementary antenna

Specifications

● Large FOV & Smooth antenna pattern - quasi-isotropic ≥20° elevation
 - rapidly decreasing ≤20° elevation
● Broadband electrical properties in 15-80 MHz
● Simple & cost-effective design

Studies

● EM simulations using NEC (Numerical Electromagnetics Code, NRL)
 → Effect of the antenna geometry of the antenna (parametric study)
 → Effect of the environment (ground, losses ...)
LSS Elementary antenna

- Study relevant existing antenna designs
LSS Elementary antenna

- Study relevant existing antenna designs
LSS Elementary antenna

- Definition of the optimal antenna (radiator ~ LWA + grid)
 - Antenna impedance
 - Beam smoothness

[Girard, et al., CRAS, 2012]

<table>
<thead>
<tr>
<th>L</th>
<th>1.42</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.5 m</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>45°</td>
</tr>
<tr>
<td>(\beta)</td>
<td>14.8°</td>
</tr>
</tbody>
</table>
LSS Elementary antenna

Resulting antenna pattern in its principal planes

HPBW E/H = 90°/92° @ 20 MHz & 180°/118° @ 80 MHz
Antenna preamplifier (ASIC)

- Wideband
- Stable
- Gain of >10 dB over the sky

GURT design
Nançay design
Subatech design
Antenna preamplifier (ASIC)

- wideband
- stable
- Gain of >10 dB over the sky

GURT design
Nançay design
Subatech design

vendredi 28 mars 2014
Antenna preamplifier (ASIC)

- wideband
- stable
- Gain of >10 dB over the sky

GURT design
Nançay design
Subatech design

Drift scan of the sky compared to LFmap

vendredi 28 mars 2014
Sensitivity to the galactic background with the LSS antenna (LSS-LONAMOS output)

- The system noise is calculated from measured LONAMOS characteristics and simulated parameters of the LSS antenna.
- The galactic noise is calculated from typical minimum galactic temperature, simulated parameters of the LSS antenna and measured parameters of LONAMOS.
- The low cut-off frequency can be decreased or increased.

LSS-LONAMOS specifications, Didier Charrier, Subatech/CNRS, February 2013
The LSS-LONAMOS board

The LSS-Lonamos board is a dual polarization LNA designed by the Nançay observatory for the LSS active antenna. It uses a dedicated micro chip circuit called 'LONAMOS' and designed at the Subatech laboratory.
LSS Elementary antenna

Nançay Decameter Array

Decameter emission from Jupiter (intense, <40 MHz)

prototype LSS antenna

LSS Elementar antenna

Decameter emission from Jupiter (intense, <40 MHz)

vendredi 28 mars 2014
LSS Elementary antenna

Nançay Decameter Array

Decimeter emission from Jupiter
(intense, <40 MHz)

- 1 LSS antenna detect jovian decameter emission down to ~10 MHz
- Measured gain consistent with EM simulations (NEC = 5.5 dB)
LSS Mini-array

Specifications

• **Sensitivity** of the MA (should detect main radiosources: CygA, CasA)
• **FOV**: Large primary lobe, low side lobe levels
• **Broadband** characteristics \(\frac{f_{\text{max}}}{f_{\text{min}}} > 5 \)
• «Fine» pointing
• **Analog** phasing system
LSS Mini-array

Specifications

- **Sensitivity** of the MA (should detect main radiosources: CygA, CasA)
- **FOV**: Large primary lobe, low side lobe levels
- **Broadband** characteristics ($f_{\text{max}}/f_{\text{min}} > 5$)
- «Fine» **pointing**
- **Analog** phasing system

Studies

- Optimal number of antennas in MA
- Distribution of antennas in MA
- Phasing system design
LSS Mini-array: topology

Generalized study of the optimal free positioning of MA

- **Deterministic algorithm**: Kogan algorithm
- **Non deterministic algorithm**: Simulated annealing

![Optimal distributions Prop.](image)

- **Compacts**
- **Irregular**
- **with ~ axial symmetry**

- SSL=-176.55 dB
- SSL=-172.09 dB
- SSL=-181.29 dB
- SSL=-162.52 dB
- SSL=-166.68 dB
- SSL=-165.25 dB
- SSL=-30.62 dB
- SSL=-164.03 dB
- SSL=-31.03 dB
- SSL=-31.14 dB
- SSL=-33.74 dB
- SSL=-33.22 dB
- SSL=-31.19 dB
- SSL=-30.20 dB
- SSL=-31.30 dB
- SSL=-28.96 dB
- SSL=-30.06 dB
- SSL=-31.12 dB

\[N=5 \quad N=6 \quad N=7 \quad N=8 \quad N=9 \quad N=10 \quad N=11 \quad N=12 \quad N=13 \quad N=14 \quad N=15 \quad N=16 \quad N=17 \quad N=18 \quad N=19 \quad N=20\]
LSS Mini-array: topology

Optimal solutions exist \((N \geq 16\) antennas\)

Irregular phased array \(\rightarrow\) Analog phasing very complex
very expensive
LSS Mini-array: topology

Optimal solutions exist (N ≥ 16 antennas)

Irregular phased array → Analog phasing very complex
very expensive

Compromise between
Radiation pattern and regular topology → hexagonal MA
of 19 antennas

\[D_{\text{inter-antennes}} = 5.5 \text{ m} \rightarrow \text{Compromise between } A_{\text{eff}} \text{ and radiation pattern quality} \]
Primary lobe: 9° at 80 MHz
33° at 20 MHz

[Girard, et al., CRAS, 2012]
Primary lobe: 9° at 80 MHz
33° at 20 MHz

Hexagonal MA
- Less grating lobes
- Lower energy lost in side lobes

[Girard, et al., CRAS, 2012]
Compensating from positive/negative time delays
Compensating from positive/negative time delays
LSS Mini-array: Phasing

Lines phase centers

1st stage of phasing
= 8 delay lines

2nd stage of phasing
= 2 delay lines

In total, 10 delay lines /pol /MA (same number as for a 4x4 array)

vendredi 28 mars 2014
LSS Mini-array: Phasing

Pointing direction map: ~1° accuracy subject to $\frac{\Delta \text{Gain}}{\text{Gain}} \leq 10\%$

2-D sky sampling

With isotropic antennas

vendredi 28 mars 2014
LSS Mini-array: Phasing

Pointing direction map: ~1° accuracy subject to \(\frac{\Delta \text{Gain}}{\text{Gain}} \leq 10\% \)

2-D sky sampling

With isotropic antennas

with LSS antenna pattern
\(\Rightarrow \) beam squint at low elevation

\vendredi 28 mars 2014
LSS Mini-array: Phasing

Prototype phasing system (MR N°1)
LSS Mini-array: Phasing

Lab tests compared to simulations
- source at the zenith, ~400 pointing directions
- agreement <<1 dB (except minima, < 5 dB)

41 MHz

Radiation pattern

79 MHz
LSS Mini-array: Phasing

Lab tests compared to simulations
- source at the zenith, ~400 pointing directions
- agreement <<1 dB (except minima, < 5 dB)

41 MHz

Radiation pattern Simulations Measures 1D profiles

79 MHz
LSS Mini-array: Phasing

Phasing system in the MA container →

Galaxy transit with one MA ↓
LSS Mini-array: Phasing (Future?)

(pers. com. Stéphane Bosse, Nançay)
NenuFAR toward SKA interest of physical miniaturization of delay lines

AAIR & MFAA projects knowledge of ASIC concept, phasing and integration of delay lines

AAIR = Aperture Array Integrated Receiver, MFAA = Middle Frequency Aperture Array
LSS Mini-array: Phasing (Future?)
(pers. com. Stéphane Bosse, Nançay)

NenuFAR toward SKA interest of physical miniaturization of delay lines
AAIR & MFAA projects knowledge of ASIC concept, phasing and integration of delay lines

AAIR = Aperture Array Integrated Receiver, MFAA = Middle Frequency Aperture Array

Electrical modeling of a time delay unit

- Using capacities & inductors
- With ASIC

ASIC = Application-Specific Integrated Circuit

Delay Coax
Cable of length
13 m

3 Delay Coax
Cable of length
3.2 m with 10 cm steps

4.5 cm à 14.1 cm selon les pertes admissibles

1.5 à 4 cm environ

4 cm max

vendredi 28 mars 2014
NenuFAR toward SKA interest of physical miniaturization of delay lines

AAIR & MFAA projects knowledge of ASIC concept, phasing and integration of delay lines

AAIR = Aperture Array Integrated Receiver, MFAA = Middle Frequency Aperture Array

Electrical modeling of a time delay unit

- Using capacities & inductors
- With ASIC

ASIC = Application-Specific Integrated Circuit

➔ Phasing 1 Mini-array, 1 pol = 20 x 20 cm rack bulk

➔ Analog (RF) Multi-Beam and direct digitization

➔ Multi-beam information carried on fiber links

vendredi 28 mars 2014
LSS Mini-array: Phasing (Future?)

(pers. com. Stéphane Bosse, Nançay)

NenuFAR toward SKA interest of physical miniaturization of delay lines

AAIR & MFAA projects knowledge of ASIC concept, phasing and integration of delay lines

AAIR = Aperture Array Integrated Receiver, MFAA = Middle Frequency Aperture Array

Electrical modeling of a time delay unit

- Using capacities & inductors
- With ASIC

ASIC = Application-Specific Integrated Circuit

- Phasing 1 Mini-array, 1 pol = 20 x 20 cm rack bulk
- Analog (RF) Multi-Beam and direct digitization
- Multi-beam information carried on fiber links

Decrease of cost & volume
LSS Mini-array: Phasing (Future?)

(pers. com. Stéphane Bosse, Nançay)

NenuFAR toward SKA interest of physical miniaturization of delay lines

AAIR & MFAA projects knowledge of ASIC concept, phasing and integration of delay lines

AAIR = Aperture Array Integrated Receiver, MFAA = Middle Frequency Aperture Array

Electrical modeling of a time delay unit

- Using capacities & inductors

- With ASIC

ASIC = Application-Specific Integrated Circuit

➔ Phasing 1 Mini-array, 1 pol = 20 x 20 cm rack bulk

➔ Analog (RF) Multi-Beam and direct digitization 19 ants

➔ Multi-beam information carried on fiber links

Decrease of cost & volume

Large scale NenuFAR at low cost (➔ SKA 3 ?)
Global NenuFAR distribution

Specifications

• « Good » \(I_{\text{Boone}} \) instantaneous \((u,v)\) distribution
• Maximum effective area in 15-80 MHz
• Ground constraints (natural, buildings)
Global NenuFAR distribution

Specifications

• « Good » |Boone instantaneous (u,v) distribution
• Maximum effective area in 15-80 MHz
• Ground constraints (natural, buildings)

Studies

• Constrained optimization of the MA positions
• Effect of relative rotation of MA
• Optimization of cabling MA
Global NenuFAR distribution

Boone algorithm: analogy between MA & gaz particles

→ enable iterative optimization of MA position toward a gaussian model

1 MA displacement is a consequence of the mean displacement imposed on the N-1 associated Fourier Measurements

[Boone, 2001, 2002]
Global NenuFAR distribution

- Taking obstacles into account → Mask derived from Nançay ground constraints (buried cables, natural obstacles, other instruments)

- GPS landmarking + topographic projection (Lambert 93)

- Authorized positioning areas
- Area for the 3 prototype MA

LOFAR FR606
Global NenuFAR distribution

Optimal distribution model: Gaussian with FWHM = 400 m $B_{\text{max}} = 450$ m

MA distribution (u,v) distribution Radial (u,v) histogram Azimuthal (u,v) histogram

[BL1 = [0.000, 0.450] km HA1 = [0.000, 0.001] h]

[FWHM = 0.4000]

[Girard, et al., CRAS, 2012]
Global NenuFAR distribution

Optimal distribution model: Gaussian with FWHM = 400 m \(B_{\text{max}} = 450 \text{ m} \)

MA distribution

(u,v) distribution

Radial (u,v) histogram

Azimuthal (u,v) histogram

\[\text{BL1} = [0.000, 0.450] \text{ km} \quad \text{HA1} = [0.000, 0.001] \text{ h} \]

F=80 MHz — \(\theta \sim 0.5^\circ \)

F=20 MHz — \(\theta \sim 1.9^\circ \)

[\text{Girard, et al., CRAS, 2012}]
Global NenuFAR distribution
Global NenuFAR distribution

← MA radiation pattern

Nord

Φ=0°

Nord

Φ=50°

vendredi 28 mars 2014
Global NenuFAR distribution

MA radiation pattern

array of 96 MA ↓

\[\Phi = 0^\circ \]

\[\Phi = 50^\circ \]

Niveau = -13 dB

Sans rotation

Gain (dB)

Angle zénital (°)

vendredi 28 mars 2014
Global NenuFAR distribution

MA radiation pattern
array of 96 MA ↓

Niveau = -13 dB Sans rotation Niveau = -17 dB Avec rotation

Gain (dB)

Angle zénital (°)

vendredi 28 mars 2014
Global NenuFAR distribution

- Minimizing cable and trench length → Need to find a compromise
Global NenuFAR distribution

- Minimizing cable and trench length → Need to find a compromise

→ Mathematical approach using graph theory: « Cable-Trench problem »
→ Integrating the ground constraints in Nançay

[Vasko, 2002]
Global NenuFAR distribution

- Minimizing cable and trench length → Need to find a compromise

Mathematical approach using graph theory: « Cable-Trench problem »
Integrating the ground constraints in Nançay

[Vasko, 2002]
Construction in phases

Prototype x 3

Phase 1 + 12

... + 5

... + 5

vendredi 28 mars 2014