Flaring stars & space environment

Carine Briand
LESIA-OP, CNRS, UPMC, Univ. P. Diderot

vendredi 28 mars 2014
Decameter regime
10 - 80 MHz (~1.2 - 2 R☉)

- Flux measurements —> Tb >> thermal values
- Emissions from non thermal origin
- Plasma waves
 Electron dynamics
 (bump-on-tail, electron-maser cyclotron)
- Polarization / Cyclotron emission —> B Norm
- Ideally, Full B components at coronal level
- Magnetic reconnection
 Filaments disruption
 data-driven models for space weather

- Time-Frequency Drift
- Mass ejection
 Shock propagation
- IPM dynamics around stars

vendredi 28 mars 2014
Sun experience

Radio emissions witness energy release in the corona and IPM. Sometimes no counterpart in other wavelengths.
Wealth of detail

Emission drifts

- **Sign**: Direction (inwards or outwards from the Sun) of electrons
- **Drift value**: Velocity of the electron beams (Briand et al. 2008)
- **Change of sign**: Local fluctuations of T in the corona? (Melnik et al. 2008, 2014)

Flare or CME-related emissions

Faint drifting emissions

Independent of large flare/CME

- **Local heating** (Briand et al. 2007, 2008)

Emissions not related to flare

Still faint emissions at « low » frequencies
Continuum - < 120MHz
Follow Flare-Related Emission
low polarization

Electron maser cyclotron ?
Diag. of B field direction ?
Polarization: a key to determine the physical processes at play

Flare related emissions
- Fund. : ~50% circular polarization
- Harm. : <15%

CME related emissions
- Fund. : <5% circular polarization
- Harm. < Fund.

Other narrow band / faint structures: from 0 to 100% circ. Polarization

ES -> EM mode conversion: polarization can reveal density gradient and/or B variation

Local electron maser cyclotron?

High spatial, spectral and time resolution together with polarization measurements & high sensitivity
Stellar Activity (decameter range)

Flares
- Herbig Ae T Tauri
- Red Dwarfs

Shocks
- Binary Stars

Young stars interaction with the proto-planetary disk

one key pb: detection of B

Fully convective stars
- Magnetic field generated and leads to magnetic reconnection

High Mass stars
- Strong stellar winds
- Produce shocks (X-ray and synchrotron)

vendredi 28 mars 2014
Red Dwarf Stars

- Lower part of the Main sequence
- ~80 stars known (2012), half within 10pc
- Coll (Teff~3500k) and small (R< Rs), L~0.1Ls
- Archetype: UV Cet (Others : AD Leo, EV Lac)
- Represent 75% of the Milky Way stars!

- First observations in the decameter range 1985

~1 flare / 2-3 hours
To be combined with higher frequency range observations Circular Polarization: yes at higher freq.
Conclusions

Solar observations

- Require higher sensitivity together with polarimetric measurements

- Diagnostic of the density, magnetic field structure of the corona \(\rightarrow \) region of launch of active phenomena

Active stars

- Still a lot to do!
 ADS: Star / Flare / Radio / Decameter \(\rightarrow \) 21 referred papers …

- Require high sensitivity + survey modes (few flares)
NEnuPHAR to push towards new simulations and laboratory experiments

- **Simulations of radio emissions**
 - Shock (Schmidt & Cairns 2013)
 - Flare related emission (Li & Cairns 2008-2013)

- **Laboratory experiments**
 - Laser -> better understand ES to EM conversion processes (Briand & Riconda, in prep.)
 - Electron gun to feed electromagnet -> electron-maser cyclotron (Bingham et al. 2013)
Images

Complementary diagnostic capabilities between f-t diagram and images

+ polarization measurements!