

Jupiter's decametric radio emission observed with NenuFAR

M. Panchenko (1), H.O. Rucker (1), A. Konovalenko (2)

- (1) Space Research Institute, Austrian Academy of Sciences, Graz, Austria;
- (2) Institute of Radio Astronomy, Kharkov, Ukraine;

Jupiter with the largest planetary magnetosphere in the solar system is a complex source of a powerful radio emission

Radio palnets:

- Earth
- Saturn
- Jupiter
- Uranus
- Neptun

Comparative spectra of auroral radio emissions normalized to a distance of 1 AU from the source. Adapted from *Zarka 1998, JGR, 103(E9), 20159*

• Discovered in 1955 by B.F. Burke and K.L. Franklin at 22.2 MHz

• Frequency range: a few MHz up to 40 MHz.

•Generation mechanism: cyclotron maser instability, radiation in the R-X mode at a frequency just above the local electron gyrofrequency [Carr et al., 1983].

• Higly polarized radio emission [Dulk et al., 1994] (elliptical polarization)

•Radio emission is mainly observed in the form of long (L) bursts, short (S) bursts and narrow band events.

9h 55m 29s - System III

lo controlled DAM

Genova, Source location of planetary radio emissions, PRE I

Occurrence of Io-DAM strongly depends on Jupiter's magnetic System III longitude and Io orbital position

non-lo controlled DAM

- sporadic radio emission modulated by planet's rotation
- sources at high altitudes of auroral lines;

S-bursts

<u>S bursts</u> - very short in duration, instantaneous bandwidth - few kHz fast negative frequency drift

Duration - few milliseconds

Generated by streams of keV electrons accelerated by electric fields between Jupiter and Io

Narrow-band emission

W

 narrowband events or splitting events – diffraction on the phase changing plasma structures in the lo torus (Lecacheux et al., 1981) or plasma waves converted into electromagnetic radiation (Shaposhnikov & Zaitsev, 1996)

Y. Leblanc and M. Rubio: A Narrow-band Splitting at the Jovian Decametric Cutoff Frequency

Fine structures

DAM is strongly elliptical polarized emission

 CMI generation mechanism predict RX mode of emission -> RH polarized from Northern and LH from Southern hemisphere

Faraday rotation - change in orientation of the polarization ellipse depending on wave frequency and the plasma density across the emission ray path.

The amount of Faraday rotation is proportional to the plasma density along the emission path and depends on frequency.

$$\Omega = RM \lambda^2$$
 $RM = \int_L n_c(l)B(l)\cos\theta(l)dl$

The main regions producing the Faraday rotation are:

- terrestrial ionosphere(~70–90)%
- Jupiter's magnetosphere and lo plasma torus (~10-30%),
- interplanetary medium (a few %)

Highly elliptically polarized Jovian DAM observed by linearly polarized antenna exhibits Faraday fringes on the dynamic spectra

Faraday rotation

• Faraday fringes can be used to estimation of the electron density variation in the lo plasma torus (e.g. Shaposhnikov et al., 1999).

Modulation Lines

- Modulation lanes are observed as lane structures drifting in the time-freq. domain [Riihimaa, 1970, 1979]. The main explanation - radiation scattering on the regular field-aligned inhomogeneities [Riihimaa, 1970, Imai et al., 1997, 2002] or on scattering the depleted field line tubes in the Jovian magnetosphere [Arkhypov and Rucker, 2013].
- Modulation lanes can be used for localization of magnetospheric inhomogeneities as well as of radio sources [Imai et al, 1997, 2002].

- Frequency range 10 40 MHz, full band dynamic spectral studies
- High spectral resolution (time and frequency resolution) study of the Sburst, narrow bands and fine structures of DAM
- Full polarization measurements polarization properties of DAM, Faraday rotation of the DAM as a possible tool to monitoring of the electron inhomogeneity of the lo plasma torus

 Long-lasting continuous observations of DAM – variation of the DAM intensity, relation with solar wind activity around Jupiter, relation to the visible UV auroral oval;

- Long-lasting continuous observations of DAM variation of the DAM intensity, relation with solar wind activity around Jupiter, relation to the visible UV auroral oval;
- Simultaneous observations ("stereoscopic" or supplementary observations) with other LF radio telescopes (NDA, UTR-2, URAN-2, GURT etc.) – reductions of the ionospheric scintillations and radio interferences, increasing of the detection probability of the radio features.

- NenuFAR as stand alone station- long lasting continuous observations of DAM

 systematic survey, variation of the DAM intensity, relation with solar wind
 activity around Jupiter, relation to the visible UV auroral oval;
- Simultaneous observations ("stereoscopic" or supplementary observations) together with other existing and future LF radio telescopes (NDA, UTR-2, URAN-2, etc.) – reductions of the ionospheric and manmade interferences, increasing of the detection probability, study of the emission geometry of Sbursts.
- <u>Support of spacecraft missions (JUNO, JUICE)</u>

NenuFAR in standalone mode:

- NenuFAR as stand alone station- long lasting continuous observations of DAM
 - systematic survey, variation of the DAM intensity, relation with solar wind activity around Jupiter, relation to the visible UV auroral oval;
- Simultaneous observations ("stereoscopic" or supplementary observations) together with other existing and future LF radio telescopes (NDA, UTR-2, URAN-2, etc.) – reductions of the ionospheric and manmade interferences, increasing of the detection probability, study of the emission geometry of Sbursts.
- Support of spacecraft missions (JUNO, JUICE)

NenuFAR as a LOFAR extension:

 High resolution imaging of the DAM sources – localization and motion of the DAM sources