TRANSIENTS WITH NENUFAR

Few inputs for the discussion

S. Corbel 14/2/2014

TWO FLAVOURS OF TRANSIENTS

- Incoherent synchrotron emission
 - Relatively slow variability (>> seconds)
 - Associated with all explosive events
 - Strong potential for MW astronomy

- Coherent emission
 - Relatively fast variability (<< seconds)
 - Usually associated with pulsars?
 - Often highly polarised

See SKA-LOFAR radio days for more details

Detection: images

Detection: time series

Expertise/Interests: Saclay, OCA?

LPC2E, OP, Saclay?, ??

LANEWBA: A NEW DEDICATED BACKEND

Beamlets:

2 x 5 Gb/s
ARTEMIS-like backend

- Channelization
- pulsar dedispersion
- S-burst detection
- RFI mitigation ...

Subbands:

of MR x 2.5 Gb/s

NenuFAR-1: 75 Gb/s

NenuFAR: 480 Gb/s

FPGA or GPU based correlator?

-> Spectro-polar-imaging

16x16-pixel skymap

~1s dump time

Transient search, Dark Ages, ...

- Obviously, the two modes are potentially there for the two kind of transients.
 - Is it really included in the design/cost definition?
 Transient buffer board?
 - Fast transients (see Ismael's talk). Probably the most interesting targets with higher impact
 - Slow transients: capabilities to do fast imaging? But we will likely be quite limited due to self-absorption

- Fast triggering possible ?
- Multi-stations triggering: Chilbolton? removing false alert.

CONCLUSIONS

- Good perspective, probably more on the fast transients side.
- Need to properly design/choose the back-end capabilities. Important to have these discussions now.
- Computing capabilities needed for fast transients?
- «Not to Slow» transients or «slow fast» transient, capabilities for fast repointing : e.g. prompt emission from GRBs ? VO alert from GW.